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Abstract. This paper first examines the digital twin
as a conceptual framework and then as an
implementation method. Several existing definitions
are reviewed, and a new one is proposed, emphasising
the time dimension where the digital object represents
a future state of the physical object. A key element is
the inclusion of an observer or decision-maker (man in
the loop). An Al-based automated decision-making
system (Al agent) is also proposed and discussed
within this framework. The concept is applied to a
real-world case: the coastal reconnaissance segment
of the Croatian fire-fighting system.

Keywords. Digital twin, unmanned aerial vehicles,
fire-fighting system, human in the loop, AI Agent.

1 Introduction

In recent years, particularly during the summer months,
wildfires have become a frequent and severe threat in
the Republic of Croatia and across other Mediterranean
countries. Despite Croatia’s long-standing firefighting
tradition and a relatively well-developed fire protection
system, wildfires still occur with potentially
devastating consequences, including significant
material damage and loss of human life. According to
the Croatian Firefighting Association, in 2024, the ten
largest fires affected a total of 13,378 hectares, which
corresponds to 133.78 million square meters (Croatian
Firefighting Association, 2025 (a)).

The primary causes of such large-scale fires include
mild winters, more frequent and intense heatwaves
compared to previous years, and human-related
factors. To protect coastal and near-coastal areas,
where the most destructive fires typically occur,
Croatian firefighting forces carry out systematic
observation and reconnaissance. This is done using
cameras installed primarily on antenna towers operated
by Odasiljaci i veze Ltd. (OiV, the national provider of
broadcasting and communication infrastructure in
Croatia) as well as on infrastructure belonging to
mobile network operators. In certain cases, manned
aircraft and unmanned aerial vehicles (UAVs) are
deployed. By 2024, 220 cameras had been installed at

110 locations, providing 360-degree visual coverage
(Zastita.info, 2025). In addition, systems such as the
Pilatus PC-9 and the Orbiter 3 UAV are used for early
fire detection, reconnaissance in hard-to-reach areas,
and real-time fire monitoring (Croatian Firefighting
Association, 2025 (b)).

These facts clearly show that technology plays a
critical role in fire prevention and early warning,
leaving room for further enhancements. One promising
direction is the development of a digital twin of the
early fire detection system. Such a model could include
spatial mapping of camera coverage, detection of
under-monitored areas, and the application of
optimization algorithms to support UAV-based
reconnaissance. In uncovered regions, UAV routes can
be optimized using bio-inspired algorithms such as
Max-Min Ant Colony Optimization (MMAS), which
dynamically adapt to spatial and temporal variables,
including the fire weather index.

In addition, the proposed framework incorporates an
Al-based automated decision-making system (Al
agent) within the digital twin. This agent enhances the
model’s ability to analyse incoming data, optimise
UAV reconnaissance routes, and support timely
decision-making in dynamic wildfire conditions. The
aim of this research is to design a digital twin of the fire
detection subsystem.

2 Theoretical background of digital
twins

The digital twin is one of the key concepts emerging
within the paradigm known as the Fourth Industrial
Revolution (Industry 4.0). This revolution is based on
the integration of digital technologies, such as the
Internet of Things (IoT), artificial intelligence,
automation, and simulation, into industrial processes.
The concept of the digital twin was first applied during
research space missions conducted by NASA in the
1960s (NASA, 2025) (Allen, 2021). During the Apollo
13 mission, an oxygen tank explosion endangered the
crew, but thanks to NASA engineers testing real-time
scenarios on physical and digital simulators, the
astronauts returned safely, an experience now seen as



a precursor to today’s concept of the digital twin: a
continuously updated simulation that mirrors a real
system.

The idea of simulating a real-world system that
receives data and responds dynamically, much like the
physical system itself, was also proposed by computer
scientist David Gelernter in his 1991 book Mirror
Worlds (Gelernter, 1991). The term digital twin was
first used in this context by Santiago Hernandez & Luis
A. Hernandez-Ibanes (1997), authors of the paper
Application of Digital 3D Models on Urban Planning
and Highway Design. The paper highlights the
advantages of creating three-dimensional digital
models for construction projects and demonstrates how
such models overcome the limitations of conventional
design through three practical case studies.

The foundations for applying the digital twin
concept in industry were laid by American scientist
Michael Grieves in 2002, when he first
comprehensively formulated the concept within the
context of Product Lifecycle Management (PLM). In
his work Origins of the Digital Twin Concept (Grieves,
2016), Grieves described the key elements of a digital
twin as the physical space, the virtual space, and the
connection between the two throughout the entire
product lifecycle.

Krizani¢ & Vréek (2025) used simulation
experiment as a method for developing digital twin of
a real production business process. The authors also
proposed a new methodology for developing
production digital twins, building upon existing
business process management frameworks.

In 2012, NASA formalized its own definition of the
digital twin, emphasizing it as the integration of
multiple models, sensor data, and analytical tools into
a cohesive virtual representation of a physical entity
(Glaessgen & Stargel, 2012).

Various researchers have presented similar
definitions of the digital twin. For example, the digital
twin is a computer model of a physical device or
system that represents all its functional features and is
connected to its operational components (Chen, 2017).
A digital twin is essentially a living model of a physical
asset or system that continuously adapts to operational
changes based on collected network data and
information, and is capable of predicting the future
state of the corresponding physical system (Liu, 2025).
It is a set of virtual information that fully describes a
potential or real physical product, ranging from the
micro (atomic) level to the macro (geometric) level
(Zheng et al., 2019). A digital twin is a digital
representation of a physical item or assembly that uses
integrated simulations and service data. This digital
representation incorporates information from multiple
sources throughout the entire product lifecycle (Vrabic,
2018). A digital twin is a virtual instance of a physical
system that is continuously updated with data on its
operation, maintenance, and condition throughout the
system’s entire lifecycle (Madni et al., 2019). It can
represent both living and non-living entities, such as

manufacturing processes, medical devices, or even

people, by integrating sensor data, simulation, and

analytics to provide insight into current and future
operational states (Interagency Modeling and Analysis

Group, 2025). Designed to accurately reflect its

physical counterpart, a digital twin incorporates real-

time data, simulation, machine learning, and reasoning
to support decision-making across the lifecycle of the

object or system (IBM, 2025).

According to IBM (2025), digital twins can be
categorized based on their application domain and
defined at various levels, from components to entire
processes. Different types of digital twins may coexist
within the same system or process. The main types
include:

1. Component or part twins, which represent the
smallest functional elements. While similar, part
twins typically refer to less critical components.

2. Asset twins, which consist of two or more
interacting components. They enable the analysis
of component interactions and performance,
generating valuable insights.

3. System or unit twins provide a broader view of how
assets work together to form a complete, functional
system. They help identify potential performance
improvements.

4. Process twins operate at the highest (macro) level,
representing how multiple systems collaborate
across a production environment. They help
determine whether systems are synchronized for
maximum efficiency and identify delays that affect
overall performance.

The concept of the digital twin has evolved from
early space exploration applications to a foundational
element of modern industrial systems, supported by
advancements in data integration, simulation, and real-
time analytics. Its layered structure, ranging from
component-level twins to process-level
representations, enables comprehensive modeling and
optimization of complex systems throughout their
entire lifecycle. This evolution and the diversity of
interpretations were comprehensively reviewed by
Dalibor et al. (2022), who analysed 1,471 publications,
of which 356 were examined in detail, identifying
conceptual properties, engineering practices, and
evaluation methods. Building on the considerations
presented above, this paper proposes the following
definition of a digital twin: A digital twin is an
extension of a sociotechnical system composed of a
physical element, integrated through automated
information channels with its digital representation in
both its current state and near future, and a human
actor as a corrective factor within the system.

3 Methodology

The methodology applied in this study follows a multi-
layered approach to the development of a digital twin
of a firefighting system, aimed at early wildfire



detection and prevention. The digital twin architecture
is structured into three core layers: the physical entity,
the digital model, and the Al-supported decision-
making layer.

The physical layer includes georeferenced
surveillance infrastructure such as PTZ cameras
distributed across coastal and near-coastal regions of
Croatia, unmanned aerial vehicles (UAVs) equipped
with high-resolution and thermal sensors, and a
centralized data center. The digital model layer
integrates multiple spatial and environmental data
sources, including camera coverage zones, uncovered
terrain points, UAV flyover coordinates, and fire risk
indicators such as the Fire Weather Index (FWI),
calculated using meteorological data. The UAVs’
operational status, flight range, and current positioning
are also modeled digitally.

The decision-making layer is supported by an Al
agent capable of integrating heterogeneous inputs to
autonomously generate UAV reconnaissance routes,
dynamically prioritize zones based on FWI values and
weather changes, and initiate missions in high-risk
areas without human intervention. However, the
system maintains a human-in-the-loop configuration,
where the operator performs data verification,
overrides automated decisions in critical scenarios, and
provides feedback to improve system adaptability.

For geospatial processing and visualization, all
maps used in the study were created using QGIS, an
open-source geographic information system. The maps
were generated in the EPSG:3765 projection
(HTRS96/TM), the official coordinate reference
system for the Republic of Croatia. QGIS was used to
define camera coverage zones, visualize UAV flight
paths, and overlay FWI values to identify critical
surveillance gaps.

To communicate system structure and component
interactions, a UML component diagram was
employed in Visual Paradigm, capturing the high-level
architecture and illustrating interfaces between
modules such as the data center, Al agent, digital
model, and physical subsystems.

4 Digital twin of the fire-fighting
system for fire prevention and
early detection

This section describes a digital twin of a firefighting
system designed for fire prevention and early
detection. The digital twin belongs to the category
known as system or unit twins. In the following, the
architecture of the digital twin, its key functional
components, and the way it supports the optimization
of unmanned aerial vehicle (UAV) routing within the
firefighting system are presented.

4.1 Physical object

In this digital twin, the physical object is the
firefighting system, more precisely, its subsystem that
is, in this context, considered an independent system
focused on fire prevention and early detection. The
physical object includes the following elements: the
monitored terrain, surveillance panoramic cameras,
unmanned aerial vehicles (UAVs), a data center.

The monitored terrain represents a system element
which, although not a device like cameras, data centers,
or UAVs, is nevertheless a key part of the physical
reality that must be captured for the digital
representation to be meaningful. Since the terrain is
observed, measured, modeled, and used for decision-
making, it constitutes the central physical entity.
Without its digital representation, fire simulations and
predictions would lack practical value.

Surveillance panoramic cameras are deployed
across the coastal and near-coastal arcas of the
Republic of Croatia. A total of 230 cameras have been
installed at 115 locations, with each location equipped
with two PTZ (Pan-Tilt-Zoom) cameras. This type of
camera enables horizontal rotation up to 360°, vertical
tilt up to 90°, and optical and/or digital zoom, allowing
for detailed monitoring of objects at long distances.
Figure 1 shows the locations of the panoramic cameras
in Croatia. Each dot on the figure represents a single
location, and since each location contains two cameras,
it is assumed that the system is designed with
redundancy to ensure operational reliability.

Figure 1. The spatial distribution of PTZ cameras for
fire detection in the EPSG:3765 projection

Unmanned aerial vehicles (UAVs) serve as mobile
sensor platforms used for reconnaissance of remote or
hard-to-reach areas that are either not covered by
cameras or where existing cameras are non-operational
for various reasons. These UAVs are equipped with
high-resolution cameras, thermal sensors, and/or air
quality sensors, enabling rapid data collection over
large terrain areas. The UAVs are connected to a
communication system and transmit the collected data
in real time to a central server, where it is further
processed and integrated into the digital twin
representation. Their use enables early detection of fire



indicators such as elevated temperatures, smoke, or
changes in vegetation.

The data center represents the physical component
of the system where data collected from the field are
stored, processed, and distributed. This includes
images and videos from surveillance cameras, data
from unmanned aerial vehicles (UAVs), as well as
information on topography, vegetation, and
microclimatic conditions. Depending on the system
architecture, the data center may be located locally
(i.e., edge computing) or in the cloud. In either case, it
plays a crucial role in creating and maintaining an up-
to-date digital representation of the real world. Its
computational power enables real-time processing of
large volumes of data, which is essential for timely
detection and response to potential threats such as
wildfires. In addition, the data center hosts algorithms
for optimizing terrain reconnaissance, including one
that calculates the optimal UAV flight route based on
uncovered areas, weather conditions, and available
resources.

4.2 Digital representation

The digital model represents a computer-based
representation of the system for fire prevention and
early detection. It is based on georeferenced data
regarding the locations of surveillance cameras and the
coordinates of areas not covered by the cameras, which
need to be monitored by unmanned aerial vehicles
(UAVs). The model also includes indicators of fire
risk, such as the Fire Weather Index (FWT), which is
used to assess the likelihood of fire ignition and spread
based on meteorological data, as well as a digital model
of the UAYV itself, which in its basic version indicates
the current position and flight path of the UAV in
space. Thus, the model consists of multiple
interconnected layers.

The first layer, as previously mentioned, contains
spatial data on the positions of the surveillance cameras
and points that are not within their fields of view.
Around each camera, a zone with a radius of 10
kilometres is defined, and the points outside these
zones represent areas that require additional UAV
reconnaissance. Figure 2 shows the zones covered by
the surveillance cameras. However, camera visibility is
limited by terrain relief Geographic areas not covered
by cameras are indicated by red points, which also
represent UAV flyover points. These points are either
manually entered by an operator or automatically
generated by an artificial intelligence-based algorithm.

Figure 2. Map showing UAV flyover points
(EPSG:3765 projection)

The second layer of the model is the temporal-dynamic
component, which includes values of the Fire Weather
Index (FWI). The Fire Weather Index is a
meteorological indicator widely used around the world
to assess wildfire danger. It consists of various
components that take into account the effects of fuel
moisture and wind on fire behavior and spread. The
higher the FWI wvalue, the more favorable the
meteorological conditions are for fire ignition and
propagation (Copernicus, 2025). Although FWI is
typically calculated once per day, within this digital
model it can be updated more frequently, depending on
the availability of high temporal resolution
meteorological data.

Based on the FWI values, reconnaissance priority
is assigned to specific areas. In cases where the FWI is
low, the UAV may omit such locations from its route
and instead focus on zones with increased risk. In this
way, the flight path is optimized, and the efficiency of
territory surveillance across the Republic of Croatia is
improved.

Figure 3 shows a map of the Republic of Croatia
with calculated FWI values over an extended time
period, while Table 1 presents the classification values
used to interpret wildfire risk levels. If the FWI values
for a specific area fall between 0 and 21 (see Table 1),
the UAV will not pass-through points within that area,
as the fire risk is considered low to moderate.



Figure 3. Fire Weather Index over an extended time
period (Source:
https://www.sumins.hr/en/projekti/modflux/)

Table 1. Interpretation of FWI values

Fire
Danger
Rating

FWI

Range Comment

Moist conditions, low
chances of fire ignition
or spread.
Moderately dry
conditions, fire may
ignite but spread is
limited.
Conditions allow
ignition and limited fire
spread.

Dry and windy
conditions, rapid fire
spread is possible.
Very favorable
conditions for
uncontrolled fire spread.
Extremely hazardous
conditions; fire spreads
quickly and is hard to
control.

0-5 Very Low

5-12 Low

12 -21 Moderate

21-30 High

30-50  Very High

> 50 Extreme

The third layer of the model refers to the operational
elements of the system, specifically the digital
representation of unmanned aerial vehicles (UAVs),
their sensor capabilities, limitations in range and flight
duration, and their current status (position, battery
level, activity). UAVs in the model can be deployed
based on predefined rules or route optimization
algorithms, and their movement is simulated in real
time.

The digital model also includes a logical
component that connects input data with decision-
making algorithms. Based on defined rules and

thresholds, the model can automatically recommend
changes in reconnaissance schedules, issue alerts to
operators, or generate reports on uncovered high-risk
zones.

This integrated approach enables not only real-time
monitoring and planning but also short-term
forecasting and the execution of simulations for
training purposes, system efficiency assessment, and
strategic decision-making in the context of fire
prevention.

4.3 Human in the Loop

In the context of the firefighting system digital twin for
early fire detection, the human (operator or analyst)
remains a key element in the decision-making loop,
especially in situations where the automated system is
unable to make an optimal decision or when system
verification is required. This human role, known as

Human in the Loop (HITL), serves as a corrective and

supervisory-decisional factor within an otherwise

highly automated system.
In the implemented digital twin, the human fulfils
multiple roles:

1. Data verification: Validates the accuracy of data
automatically collected and processed by system
components (e.g., cameras, sensors on UAVs).

2. Decision-making: Based on the current and
projected system state (e.g., fire prediction using
the FWI index), the human decides on activating
UAV reconnaissance.

3. Intervention: In cases of unexpected system
behavior (e.g., UAV malfunction, sudden weather
changes), the human can modify algorithm-
generated flight plans.

4. System learning and adaptation: Feedback
provided by the human can be used to train and
improve the performance of predictive models
within the digital twin.

The role of the human is not only reactive but also
proactive, as it involves interpreting complex scenarios
and making decisions that go beyond the current
capabilities of automated systems. Therefore, the
digital twin does not replace the human in the system,
but rather provides tools to support better situational
assessment and more effective responses aimed at fire
prevention and environmental protection.

5 Concept of developing an
automated decision-making
system (Al agent)

The role of the human as a corrective factor within the
fire surveillance and reconnaissance system remains
indisputable, particularly in decision-making under
complex and unpredictable conditions. However, with
the advancement of technological infrastructure and
the increasing availability of real-time data, there is a



growing need for a higher degree of automation. In this
context, the concept of an automated decision-making
system based on artificial intelligence becomes
particularly prominent.

Such an Al agent, implemented within the digital
twin of the firefighting system, is responsible not only
for analyzing and interpreting data but also for making
decisions within predefined boundaries of autonomy.

The level of autonomy of the Al agent may vary
depending on the context and complexity of the
situation. At the lowest level, the agent functions as a
recommendation system, providing suggestions to the
operator, while the human still retains final decision-
making authority. In more functionally advanced
scenarios, the agent autonomously handles routine
tasks, such as identifying reconnaissance areas based
on fire danger index values, while seeking human
confirmation for more complex decisions. At the
highest level of autonomy, the agent is capable of
making and executing decisions in real time, relying on
previously learned patterns, safety rules, and system
operational constraints.

Within the digital twin, the AI agent integrates
various input data, such as geospatial information on
terrain coverage by surveillance cameras, Fire Weather
Index values, real-time weather forecasts, operational
status and availability of unmanned aerial vehicles
(UAVs), historical wildfire data, and records of
surveillance equipment failures. Based on this
information, the agent is capable of autonomously
generating optimal reconnaissance routes, dynamically
adjusting priorities in response to changing weather
conditions and assessed risks, estimating the required
number of UAVs for a given operation, and, in
emergency situations, initiating reconnaissance
without the need for human intervention.

The goal of implementing such a system is not to
eliminate the human from the decision-making
process, but rather to increase efficiency and reduce
system response time in situations that require urgent
action. This creates the foundation for advanced early
warning systems, in which the digital twin functions
not merely as a passive reflection of reality, but as an
active, predictive, and adaptive entity capable of acting
in real time.

6 UML component diagram

The system architecture is modelled using a UML
component diagram to illustrate the main modules and
their interactions within the proposed framework. The
digital twin is central to this architecture, integrating
real-time surveillance data, predictive simulation
models, and Al-based decision-making to support early
wildfire detection and reconnaissance.

Figure 4 shows the main components, including the
unmanned aerial vehicle (UAV) fleet, data centre,
digital twin model, Al agent, optimisation algorithms
(such as MMAS), and camera network, as well as the

interfaces and dependencies between them. The
diagram highlights how data flows from surveillance
cameras and UAVs to the data centre, where it is
processed and fed into the digital twin. The Al agent
analyses this data, optimises UAV reconnaissance
routes, and can initiate missions in urgent situations.

SOCIOTECHNICAL SYSTEM:DIGITAL TWIN
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Figure 4. UML component diagram

In addition to the component diagram, other UML
diagrams could also have been used to represent the
system from different perspectives, such as use case
diagrams, activity diagrams, sequence diagrams, class
diagrams, and state diagrams. The component diagram
was selected because it provides a clear and structured
representation of the high-level architecture of the
digital twin system. It effectively illustrates the key
components, along with their interactions and
dependencies. This makes it particularly suitable for
communicating the modular structure and functional
relationships within a complex socio-technical system.

System components:

e Sociotechnical system — The integrated framework
combining human operators, technical
infrastructure, and organisational processes for
wildfire detection and reconnaissance.

e Digital twin — A virtual representation of the
physical reconnaissance system that continuously
integrates real-time data, enabling simulation,
prediction, and decision-support.

e Unmanned aerial vehicles (UAVs) — Remotely
piloted aircraft equipped with sensors and cameras
for aerial reconnaissance of under-monitored or
high-risk areas.

e Camera system — A network of fixed surveillance
cameras providing continuous visual monitoring of
wildfire-prone zones.

o Telemetry data / route commands — Data sent
from UAVs to the data centre, including location,
status, and sensor readings, and route instructions
sent back from the control system.



e Camera operational status data — Information on
the functional state of each camera, used for fault
detection and maintenance planning.

e Data centre — The central hub for data collection,
processing, and storage, hosting the digital twin and
Al modules.

e Digital model — The core simulation environment
within the digital twin that integrates real-time and
historical data to predict system behaviour.

e Al agent - An Al-based automated
decision-making module that analyses data,
optimises UAV routes, and can autonomously
initiate actions.

¢ Route computation — The process of calculating
optimal UAV reconnaissance paths based on fire
weather index, camera coverage, and UAV
availability.

e Algorithm — Computational methods for
optimisation, such as Max-Min Ant Colony
Optimisation (MMAS), which dynamically adapts
to changing conditions.

The component diagram was chosen because it
provides a clear, high-level view of the architecture of
the digital twin system and effectively conveys the
modular structure and functional relationships within a
complex socio-technical system.

7 Conclusion and future work

This paper presented a conceptual and architectural
framework for the development of a digital twin of a
firefighting system designed for early fire detection
and prevention. By integrating physical components
such as surveillance cameras, unmanned aerial vehicles
(UAVs), and data centers with a multilayered digital
model and an Al-based decision-making agent, the
system enables real-time monitoring, adaptive
response, and strategic planning. Special emphasis was
placed on the interoperability between human
operators and automated processes, highlighting the
role of the human-in-the-loop in ensuring system
reliability and informed decision-making.

The proposed approach demonstrates the potential
of digital twins not only as passive representations of
physical systems but as active, predictive, and
autonomous tools capable of supporting complex
operations in  dynamic  environments.  The
incorporation of real-time data streams, Al-driven
route optimization, and scenario-based simulations
lays the foundation for advanced early warning
systems in wildfire management.

Future research will focus on enhancing the
system’s adaptability and autonomy by incorporating
additional environmental and operational data into the
optimization process. In particular, UAV routes in
uncovered regions can be optimized using bio-inspired
algorithms such as Max-Min Ant Colony Optimization

(MMAS), which dynamically adapt to spatial and
temporal variables, including the fire weather index.
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