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Abstract. This paper first examines the digital twin 
as a conceptual framework and then as an 
implementation method. Several existing definitions 
are reviewed, and a new one is proposed, emphasising 
the time dimension where the digital object represents 
a future state of the physical object. A key element is 
the inclusion of an observer or decision-maker (man in 
the loop). An AI-based automated decision-making 
system (AI agent) is also proposed and discussed 
within this framework. The concept is applied to a 
real-world case: the coastal reconnaissance segment 
of the Croatian fire-fighting system. 
 
Keywords. Digital twin, unmanned aerial vehicles, 
fire-fighting system, human in the loop, AI Agent.  

1 Introduction 

In recent years, particularly during the summer months, 
wildfires have become a frequent and severe threat in 
the Republic of Croatia and across other Mediterranean 
countries. Despite Croatia’s long-standing firefighting 
tradition and a relatively well-developed fire protection 
system, wildfires still occur with potentially 
devastating consequences, including significant 
material damage and loss of human life. According to 
the Croatian Firefighting Association, in 2024, the ten 
largest fires affected a total of 13,378 hectares, which 
corresponds to 133.78 million square meters (Croatian 
Firefighting Association, 2025 (a)). 

The primary causes of such large-scale fires include 
mild winters, more frequent and intense heatwaves 
compared to previous years, and human-related 
factors. To protect coastal and near-coastal areas, 
where the most destructive fires typically occur, 
Croatian firefighting forces carry out systematic 
observation and reconnaissance. This is done using 
cameras installed primarily on antenna towers operated 
by Odašiljači i veze Ltd. (OiV, the national provider of 
broadcasting and communication infrastructure in 
Croatia) as well as on infrastructure belonging to 
mobile network operators. In certain cases, manned 
aircraft and unmanned aerial vehicles (UAVs) are 
deployed. By 2024, 220 cameras had been installed at 

110 locations, providing 360-degree visual coverage 
(Zaštita.info, 2025). In addition, systems such as the 
Pilatus PC-9 and the Orbiter 3 UAV are used for early 
fire detection, reconnaissance in hard-to-reach areas, 
and real-time fire monitoring (Croatian Firefighting 
Association, 2025 (b)). 

These facts clearly show that technology plays a 
critical role in fire prevention and early warning, 
leaving room for further enhancements. One promising 
direction is the development of a digital twin of the 
early fire detection system. Such a model could include 
spatial mapping of camera coverage, detection of 
under-monitored areas, and the application of 
optimization algorithms to support UAV-based 
reconnaissance. In uncovered regions, UAV routes can 
be optimized using bio-inspired algorithms such as 
Max-Min Ant Colony Optimization (MMAS), which 
dynamically adapt to spatial and temporal variables, 
including the fire weather index. 

In addition, the proposed framework incorporates an 
AI-based automated decision-making system (AI 
agent) within the digital twin. This agent enhances the 
model’s ability to analyse incoming data, optimise 
UAV reconnaissance routes, and support timely 
decision-making in dynamic wildfire conditions. The 
aim of this research is to design a digital twin of the fire 
detection subsystem. 

2 Theoretical background of digital 
twins 

The digital twin is one of the key concepts emerging 
within the paradigm known as the Fourth Industrial 
Revolution (Industry 4.0). This revolution is based on 
the integration of digital technologies, such as the 
Internet of Things (IoT), artificial intelligence, 
automation, and simulation, into industrial processes. 
The concept of the digital twin was first applied during 
research space missions conducted by NASA in the 
1960s (NASA, 2025) (Allen, 2021). During the Apollo 
13 mission, an oxygen tank explosion endangered the 
crew, but thanks to NASA engineers testing real-time 
scenarios on physical and digital simulators, the 
astronauts returned safely, an experience now seen as 



a precursor to today’s concept of the digital twin: a 
continuously updated simulation that mirrors a real 
system. 

The idea of simulating a real-world system that 
receives data and responds dynamically, much like the 
physical system itself, was also proposed by computer 
scientist David Gelernter in his 1991 book Mirror 
Worlds (Gelernter, 1991). The term digital twin was 
first used in this context by Santiago Hernandez & Luis 
A. Hernandez-Ibanes (1997), authors of the paper 
Application of Digital 3D Models on Urban Planning 
and Highway Design. The paper highlights the 
advantages of creating three-dimensional digital 
models for construction projects and demonstrates how 
such models overcome the limitations of conventional 
design through three practical case studies. 

The foundations for applying the digital twin 
concept in industry were laid by American scientist 
Michael Grieves in 2002, when he first 
comprehensively formulated the concept within the 
context of Product Lifecycle Management (PLM). In 
his work Origins of the Digital Twin Concept (Grieves, 
2016), Grieves described the key elements of a digital 
twin as the physical space, the virtual space, and the 
connection between the two throughout the entire 
product lifecycle. 

Križanić & Vrček (2025) used simulation 
experiment as a method for developing digital twin of 
a real production business process. The authors also 
proposed a new methodology for developing 
production digital twins, building upon existing 
business process management frameworks. 

In 2012, NASA formalized its own definition of the 
digital twin, emphasizing it as the integration of 
multiple models, sensor data, and analytical tools into 
a cohesive virtual representation of a physical entity 
(Glaessgen & Stargel, 2012). 

Various researchers have presented similar 
definitions of the digital twin. For example, the digital 
twin is a computer model of a physical device or 
system that represents all its functional features and is 
connected to its operational components (Chen, 2017). 
A digital twin is essentially a living model of a physical 
asset or system that continuously adapts to operational 
changes based on collected network data and 
information, and is capable of predicting the future 
state of the corresponding physical system (Liu, 2025). 
It is a set of virtual information that fully describes a 
potential or real physical product, ranging from the 
micro (atomic) level to the macro (geometric) level 
(Zheng et al., 2019). A digital twin is a digital 
representation of a physical item or assembly that uses 
integrated simulations and service data. This digital 
representation incorporates information from multiple 
sources throughout the entire product lifecycle (Vrabič, 
2018). A digital twin is a virtual instance of a physical 
system that is continuously updated with data on its 
operation, maintenance, and condition throughout the 
system’s entire lifecycle (Madni et al., 2019). It can 
represent both living and non-living entities, such as 

manufacturing processes, medical devices, or even 
people, by integrating sensor data, simulation, and 
analytics to provide insight into current and future 
operational states (Interagency Modeling and Analysis 
Group, 2025). Designed to accurately reflect its 
physical counterpart, a digital twin incorporates real-
time data, simulation, machine learning, and reasoning 
to support decision-making across the lifecycle of the 
object or system (IBM, 2025). 

According to IBM (2025), digital twins can be 
categorized based on their application domain and 
defined at various levels, from components to entire 
processes. Different types of digital twins may coexist 
within the same system or process. The main types 
include: 
1. Component or part twins, which represent the 

smallest functional elements. While similar, part 
twins typically refer to less critical components. 

2. Asset twins, which consist of two or more 
interacting components. They enable the analysis 
of component interactions and performance, 
generating valuable insights. 

3. System or unit twins provide a broader view of how 
assets work together to form a complete, functional 
system. They help identify potential performance 
improvements. 

4. Process twins operate at the highest (macro) level, 
representing how multiple systems collaborate 
across a production environment. They help 
determine whether systems are synchronized for 
maximum efficiency and identify delays that affect 
overall performance. 
The concept of the digital twin has evolved from 

early space exploration applications to a foundational 
element of modern industrial systems, supported by 
advancements in data integration, simulation, and real-
time analytics. Its layered structure, ranging from 
component-level twins to process-level 
representations, enables comprehensive modeling and 
optimization of complex systems throughout their 
entire lifecycle. This evolution and the diversity of 
interpretations were comprehensively reviewed by 
Dalibor et al. (2022), who analysed 1,471 publications, 
of which 356 were examined in detail, identifying 
conceptual properties, engineering practices, and 
evaluation methods. Building on the considerations 
presented above, this paper proposes the following 
definition of a digital twin: A digital twin is an 
extension of a sociotechnical system composed of a 
physical element, integrated through automated 
information channels with its digital representation in 
both its current state and near future, and a human 
actor as a corrective factor within the system. 

3 Methodology 

The methodology applied in this study follows a multi-
layered approach to the development of a digital twin 
of a firefighting system, aimed at early wildfire 



detection and prevention. The digital twin architecture 
is structured into three core layers: the physical entity, 
the digital model, and the AI-supported decision-
making layer. 

The physical layer includes georeferenced 
surveillance infrastructure such as PTZ cameras 
distributed across coastal and near-coastal regions of 
Croatia, unmanned aerial vehicles (UAVs) equipped 
with high-resolution and thermal sensors, and a 
centralized data center. The digital model layer 
integrates multiple spatial and environmental data 
sources, including camera coverage zones, uncovered 
terrain points, UAV flyover coordinates, and fire risk 
indicators such as the Fire Weather Index (FWI), 
calculated using meteorological data. The UAVs’ 
operational status, flight range, and current positioning 
are also modeled digitally. 

The decision-making layer is supported by an AI 
agent capable of integrating heterogeneous inputs to 
autonomously generate UAV reconnaissance routes, 
dynamically prioritize zones based on FWI values and 
weather changes, and initiate missions in high-risk 
areas without human intervention. However, the 
system maintains a human-in-the-loop configuration, 
where the operator performs data verification, 
overrides automated decisions in critical scenarios, and 
provides feedback to improve system adaptability. 

For geospatial processing and visualization, all 
maps used in the study were created using QGIS, an 
open-source geographic information system. The maps 
were generated in the EPSG:3765 projection 
(HTRS96/TM), the official coordinate reference 
system for the Republic of Croatia. QGIS was used to 
define camera coverage zones, visualize UAV flight 
paths, and overlay FWI values to identify critical 
surveillance gaps. 

To communicate system structure and component 
interactions, a UML component diagram was 
employed in Visual Paradigm, capturing the high-level 
architecture and illustrating interfaces between 
modules such as the data center, AI agent, digital 
model, and physical subsystems. 

4 Digital twin of the fire-fighting 
system for fire prevention and 
early detection 

This section describes a digital twin of a firefighting 
system designed for fire prevention and early 
detection. The digital twin belongs to the category 
known as system or unit twins. In the following, the 
architecture of the digital twin, its key functional 
components, and the way it supports the optimization 
of unmanned aerial vehicle (UAV) routing within the 
firefighting system are presented. 

4.1 Physical object 

In this digital twin, the physical object is the 
firefighting system, more precisely, its subsystem that 
is, in this context, considered an independent system 
focused on fire prevention and early detection. The 
physical object includes the following elements: the 
monitored terrain, surveillance panoramic cameras, 
unmanned aerial vehicles (UAVs), a data center.  

The monitored terrain represents a system element 
which, although not a device like cameras, data centers, 
or UAVs, is nevertheless a key part of the physical 
reality that must be captured for the digital 
representation to be meaningful. Since the terrain is 
observed, measured, modeled, and used for decision-
making, it constitutes the central physical entity. 
Without its digital representation, fire simulations and 
predictions would lack practical value. 

Surveillance panoramic cameras are deployed 
across the coastal and near-coastal areas of the 
Republic of Croatia. A total of 230 cameras have been 
installed at 115 locations, with each location equipped 
with two PTZ (Pan-Tilt-Zoom) cameras. This type of 
camera enables horizontal rotation up to 360°, vertical 
tilt up to 90°, and optical and/or digital zoom, allowing 
for detailed monitoring of objects at long distances. 
Figure 1 shows the locations of the panoramic cameras 
in Croatia. Each dot on the figure represents a single 
location, and since each location contains two cameras, 
it is assumed that the system is designed with 
redundancy to ensure operational reliability. 

 

 

Figure 1. The spatial distribution of PTZ cameras for 
fire detection in the EPSG:3765 projection 

Unmanned aerial vehicles (UAVs) serve as mobile 
sensor platforms used for reconnaissance of remote or 
hard-to-reach areas that are either not covered by 
cameras or where existing cameras are non-operational 
for various reasons. These UAVs are equipped with 
high-resolution cameras, thermal sensors, and/or air 
quality sensors, enabling rapid data collection over 
large terrain areas. The UAVs are connected to a 
communication system and transmit the collected data 
in real time to a central server, where it is further 
processed and integrated into the digital twin 
representation. Their use enables early detection of fire 



indicators such as elevated temperatures, smoke, or 
changes in vegetation.  

The data center represents the physical component 
of the system where data collected from the field are 
stored, processed, and distributed. This includes 
images and videos from surveillance cameras, data 
from unmanned aerial vehicles (UAVs), as well as 
information on topography, vegetation, and 
microclimatic conditions. Depending on the system 
architecture, the data center may be located locally 
(i.e., edge computing) or in the cloud. In either case, it 
plays a crucial role in creating and maintaining an up-
to-date digital representation of the real world. Its 
computational power enables real-time processing of 
large volumes of data, which is essential for timely 
detection and response to potential threats such as 
wildfires. In addition, the data center hosts algorithms 
for optimizing terrain reconnaissance, including one 
that calculates the optimal UAV flight route based on 
uncovered areas, weather conditions, and available 
resources. 

4.2 Digital representation 

The digital model represents a computer-based 
representation of the system for fire prevention and 
early detection. It is based on georeferenced data 
regarding the locations of surveillance cameras and the 
coordinates of areas not covered by the cameras, which 
need to be monitored by unmanned aerial vehicles 
(UAVs). The model also includes indicators of fire 
risk, such as the Fire Weather Index (FWI), which is 
used to assess the likelihood of fire ignition and spread 
based on meteorological data, as well as a digital model 
of the UAV itself, which in its basic version indicates 
the current position and flight path of the UAV in 
space. Thus, the model consists of multiple 
interconnected layers. 

The first layer, as previously mentioned, contains 
spatial data on the positions of the surveillance cameras 
and points that are not within their fields of view. 
Around each camera, a zone with a radius of 10 
kilometres is defined, and the points outside these 
zones represent areas that require additional UAV 
reconnaissance. Figure 2 shows the zones covered by 
the surveillance cameras. However, camera visibility is 
limited by terrain relief Geographic areas not covered 
by cameras are indicated by red points, which also 
represent UAV flyover points. These points are either 
manually entered by an operator or automatically 
generated by an artificial intelligence-based algorithm. 

 

Figure 2. Map showing UAV flyover points 
(EPSG:3765 projection) 

The second layer of the model is the temporal-dynamic 
component, which includes values of the Fire Weather 
Index (FWI). The Fire Weather Index is a 
meteorological indicator widely used around the world 
to assess wildfire danger. It consists of various 
components that take into account the effects of fuel 
moisture and wind on fire behavior and spread. The 
higher the FWI value, the more favorable the 
meteorological conditions are for fire ignition and 
propagation (Copernicus, 2025). Although FWI is 
typically calculated once per day, within this digital 
model it can be updated more frequently, depending on 
the availability of high temporal resolution 
meteorological data. 

Based on the FWI values, reconnaissance priority 
is assigned to specific areas. In cases where the FWI is 
low, the UAV may omit such locations from its route 
and instead focus on zones with increased risk. In this 
way, the flight path is optimized, and the efficiency of 
territory surveillance across the Republic of Croatia is 
improved. 

Figure 3 shows a map of the Republic of Croatia 
with calculated FWI values over an extended time 
period, while Table 1 presents the classification values 
used to interpret wildfire risk levels. If the FWI values 
for a specific area fall between 0 and 21 (see Table 1), 
the UAV will not pass-through points within that area, 
as the fire risk is considered low to moderate. 

 



 
Figure 3. Fire Weather Index over an extended time 

period (Source: 
https://www.sumins.hr/en/projekti/modflux/) 

Table 1. Interpretation of FWI values 
 

FWI 
Range 

Fire 
Danger 
Rating 

Comment 

0 – 5 Very Low 
Moist conditions, low 
chances of fire ignition 

or spread. 

5 – 12 Low 

Moderately dry 
conditions, fire may 
ignite but spread is 

limited. 

12 – 21 Moderate 
Conditions allow 

ignition and limited fire 
spread. 

21 – 30 High 
Dry and windy 

conditions, rapid fire 
spread is possible. 

30 – 50 Very High 
Very favorable 
conditions for 

uncontrolled fire spread. 

> 50 Extreme 

Extremely hazardous 
conditions; fire spreads 
quickly and is hard to 

control. 

The third layer of the model refers to the operational 
elements of the system, specifically the digital 
representation of unmanned aerial vehicles (UAVs), 
their sensor capabilities, limitations in range and flight 
duration, and their current status (position, battery 
level, activity). UAVs in the model can be deployed 
based on predefined rules or route optimization 
algorithms, and their movement is simulated in real 
time. 

The digital model also includes a logical 
component that connects input data with decision-
making algorithms. Based on defined rules and 

thresholds, the model can automatically recommend 
changes in reconnaissance schedules, issue alerts to 
operators, or generate reports on uncovered high-risk 
zones. 

This integrated approach enables not only real-time 
monitoring and planning but also short-term 
forecasting and the execution of simulations for 
training purposes, system efficiency assessment, and 
strategic decision-making in the context of fire 
prevention. 

4.3 Human in the Loop 

In the context of the firefighting system digital twin for 
early fire detection, the human (operator or analyst) 
remains a key element in the decision-making loop, 
especially in situations where the automated system is 
unable to make an optimal decision or when system 
verification is required. This human role, known as 
Human in the Loop (HITL), serves as a corrective and 
supervisory-decisional factor within an otherwise 
highly automated system. 

In the implemented digital twin, the human fulfils 
multiple roles: 
1. Data verification: Validates the accuracy of data 

automatically collected and processed by system 
components (e.g., cameras, sensors on UAVs). 

2. Decision-making: Based on the current and 
projected system state (e.g., fire prediction using 
the FWI index), the human decides on activating 
UAV reconnaissance. 

3. Intervention: In cases of unexpected system 
behavior (e.g., UAV malfunction, sudden weather 
changes), the human can modify algorithm-
generated flight plans. 

4. System learning and adaptation: Feedback 
provided by the human can be used to train and 
improve the performance of predictive models 
within the digital twin. 

The role of the human is not only reactive but also 
proactive, as it involves interpreting complex scenarios 
and making decisions that go beyond the current 
capabilities of automated systems. Therefore, the 
digital twin does not replace the human in the system, 
but rather provides tools to support better situational 
assessment and more effective responses aimed at fire 
prevention and environmental protection. 

5 Concept of developing an 
automated decision-making 
system (AI agent) 

The role of the human as a corrective factor within the 
fire surveillance and reconnaissance system remains 
indisputable, particularly in decision-making under 
complex and unpredictable conditions. However, with 
the advancement of technological infrastructure and 
the increasing availability of real-time data, there is a 



growing need for a higher degree of automation. In this 
context, the concept of an automated decision-making 
system based on artificial intelligence becomes 
particularly prominent. 

Such an AI agent, implemented within the digital 
twin of the firefighting system, is responsible not only 
for analyzing and interpreting data but also for making 
decisions within predefined boundaries of autonomy. 

The level of autonomy of the AI agent may vary 
depending on the context and complexity of the 
situation. At the lowest level, the agent functions as a 
recommendation system, providing suggestions to the 
operator, while the human still retains final decision-
making authority. In more functionally advanced 
scenarios, the agent autonomously handles routine 
tasks, such as identifying reconnaissance areas based 
on fire danger index values, while seeking human 
confirmation for more complex decisions. At the 
highest level of autonomy, the agent is capable of 
making and executing decisions in real time, relying on 
previously learned patterns, safety rules, and system 
operational constraints. 

Within the digital twin, the AI agent integrates 
various input data, such as geospatial information on 
terrain coverage by surveillance cameras, Fire Weather 
Index values, real-time weather forecasts, operational 
status and availability of unmanned aerial vehicles 
(UAVs), historical wildfire data, and records of 
surveillance equipment failures. Based on this 
information, the agent is capable of autonomously 
generating optimal reconnaissance routes, dynamically 
adjusting priorities in response to changing weather 
conditions and assessed risks, estimating the required 
number of UAVs for a given operation, and, in 
emergency situations, initiating reconnaissance 
without the need for human intervention. 

The goal of implementing such a system is not to 
eliminate the human from the decision-making 
process, but rather to increase efficiency and reduce 
system response time in situations that require urgent 
action. This creates the foundation for advanced early 
warning systems, in which the digital twin functions 
not merely as a passive reflection of reality, but as an 
active, predictive, and adaptive entity capable of acting 
in real time. 

6 UML component diagram 

The system architecture is modelled using a UML 
component diagram to illustrate the main modules and 
their interactions within the proposed framework. The 
digital twin is central to this architecture, integrating 
real-time surveillance data, predictive simulation 
models, and AI-based decision-making to support early 
wildfire detection and reconnaissance. 

Figure 4 shows the main components, including the 
unmanned aerial vehicle (UAV) fleet, data centre, 
digital twin model, AI agent, optimisation algorithms 
(such as MMAS), and camera network, as well as the 

interfaces and dependencies between them. The 
diagram highlights how data flows from surveillance 
cameras and UAVs to the data centre, where it is 
processed and fed into the digital twin. The AI agent 
analyses this data, optimises UAV reconnaissance 
routes, and can initiate missions in urgent situations. 

 

 

Figure 4. UML component diagram 

In addition to the component diagram, other UML 
diagrams could also have been used to represent the 
system from different perspectives, such as use case 
diagrams, activity diagrams, sequence diagrams, class 
diagrams, and state diagrams. The component diagram 
was selected because it provides a clear and structured 
representation of the high-level architecture of the 
digital twin system. It effectively illustrates the key 
components, along with their interactions and 
dependencies. This makes it particularly suitable for 
communicating the modular structure and functional 
relationships within a complex socio-technical system. 

System components: 

 Sociotechnical system – The integrated framework 
combining human operators, technical 
infrastructure, and organisational processes for 
wildfire detection and reconnaissance. 

 Digital twin – A virtual representation of the 
physical reconnaissance system that continuously 
integrates real-time data, enabling simulation, 
prediction, and decision-support. 

 Unmanned aerial vehicles (UAVs) – Remotely 
piloted aircraft equipped with sensors and cameras 
for aerial reconnaissance of under-monitored or 
high-risk areas. 

 Camera system – A network of fixed surveillance 
cameras providing continuous visual monitoring of 
wildfire-prone zones. 

 Telemetry data / route commands – Data sent 
from UAVs to the data centre, including location, 
status, and sensor readings, and route instructions 
sent back from the control system. 



 Camera operational status data – Information on 
the functional state of each camera, used for fault 
detection and maintenance planning. 

 Data centre – The central hub for data collection, 
processing, and storage, hosting the digital twin and 
AI modules. 

 Digital model – The core simulation environment 
within the digital twin that integrates real-time and 
historical data to predict system behaviour. 

 AI agent – An AI-based automated 
decision-making module that analyses data, 
optimises UAV routes, and can autonomously 
initiate actions. 

 Route computation – The process of calculating 
optimal UAV reconnaissance paths based on fire 
weather index, camera coverage, and UAV 
availability. 

 Algorithm – Computational methods for 
optimisation, such as Max-Min Ant Colony 
Optimisation (MMAS), which dynamically adapts 
to changing conditions. 

The component diagram was chosen because it 
provides a clear, high-level view of the architecture of 
the digital twin system and effectively conveys the 
modular structure and functional relationships within a 
complex socio-technical system. 

7 Conclusion and future work 

This paper presented a conceptual and architectural 
framework for the development of a digital twin of a 
firefighting system designed for early fire detection 
and prevention. By integrating physical components 
such as surveillance cameras, unmanned aerial vehicles 
(UAVs), and data centers with a multilayered digital 
model and an AI-based decision-making agent, the 
system enables real-time monitoring, adaptive 
response, and strategic planning. Special emphasis was 
placed on the interoperability between human 
operators and automated processes, highlighting the 
role of the human-in-the-loop in ensuring system 
reliability and informed decision-making. 

The proposed approach demonstrates the potential 
of digital twins not only as passive representations of 
physical systems but as active, predictive, and 
autonomous tools capable of supporting complex 
operations in dynamic environments. The 
incorporation of real-time data streams, AI-driven 
route optimization, and scenario-based simulations 
lays the foundation for advanced early warning 
systems in wildfire management.  

Future research will focus on enhancing the 
system’s adaptability and autonomy by incorporating 
additional environmental and operational data into the 
optimization process. In particular, UAV routes in 
uncovered regions can be optimized using bio-inspired 
algorithms such as Max-Min Ant Colony Optimization 

(MMAS), which dynamically adapt to spatial and 
temporal variables, including the fire weather index. 
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